ERA Environmental Management Solutions Presentation

Management Solutions

Suppliers Partnership Innovation Summit 2022

Over State University

0

🛗 July 27 – 28th, 2022

ENVIRONMENT

Introduction of ERA Presented by Erin Manitou (ERA Lead Project Analyst)

Importance of data accuracy & risks of potential uncaught data issues

Presented by Dave Steedly (Toyota Regional Environmental Manager at TMMK)

Using AI for Data Anomaly Detection in Big Data Presented by DJ Kim (Concordia University)

Case Study: Toyota Kentucky Facility Data Anomalies & Analysis

Presented by Sarah Sajedi (ERA Chief Technology Officer, Co-Founder)

Introduction of Sustainability Basic Concepts

Presented by Sarah Sajedi (ERA Chief Technology Officer, Co-Founder)

ERA Software Demonstration – Master Sustainability Database Presented Chelsea Scalia (ERA Sustainability Team Lead)

ERA Software Demonstration of Automated Sustainability Acquisition Presented Chelsea Scalia (ERA Sustainability Team Lead)

ERA Software Demonstration of Dashboard / KPI Analytics Presented Chelsea Scalia (ERA Sustainability Team Lead)

Meet our Presenters

Sarah Sajedi

Chief Technology Officer & Co-Founder ERA Environmental

Dave Steedly

Regional Environmental Manager Toyota Motor Manufacturing Kentucky

Gary Vegh

3

President & Co-Founder Senior Environmental Toxicologist ERA Environmental

Erin Manitou

Managing Partner / Lead Project Analyst ERA Environmental

Chelsea Scalia

Sustainability Specialist &Project Manager ERA Environmental

Ph D Candidate Concordia University

More than 27 vears of committed service

Built-in & updated chemical and regulatory library

Routine updates & upgrades – No software versioning

Dedicated

database

client

FRA Awards & Accolades

Top 10 automotive solution providers 2022

Best Environmental Management Solutions Tech Company 2022

SP Shinning Star award Gary Vegh

Women of inspiration Sarah Sajedi

Stevie Woman of the Year Award 2013

Featured in smart innovations -2016

Royal Bank of Canada Women of the Year Award

Canadian's top small & medium employers

Sara Kirk Award for Innovation and Entrepreneurship

Top product of the year 2016

ERA's Automotive Client Snapshot

Over **20 years** experience with automotive industry

Over 200 automotive / truck manufacturing facilities using the **ERA software**

ERA Modules in use:

Environmental Management, Waste Container Tracking, Compliance Task Management, Audits/Inspections, Refrigerants Management, Product Approval

ERA's Automotive Supply Chain Snapshot

6

OLVENTS & COATINGS. IN

The Importance of Data Accuracy and Risks of Data Anomalies

ΤΟΥΟΤΑ

Presenter: Dave Steedly, Regininal Environmental

Manager (Toyota Motor Manufacturing Kentucky)

Environmental Management Challenges of TMMK

Big Data Challenge

Year	Number of records for Finishing Dept
2021	13,252
2020	13,525
2019	17,013
2018	16,939
2017	17,280

Juctindex	Description	✓ StartDate 1	🛚 EndDate 🔄	Amoun 👻 U	nitld 💌	UserAn 👻	UserUn 🔻	EditDa
128909	TEROSON PV 2626	11/1/2021 0:0	0 11/30/2021 0:00	233431.8	1	233431.8	1	09:20.t
128909	TEROSON PV 2626	11/1/2021 0:0	0 11/30/2021 0:00	15961.15	1	15961.15	1	09:20.6
128024	ADDITIVE, ACTICIDE LA 1209,55 GALLON DRUM	11/1/2021 0:0	0 11/30/2021 0:00	440	3	440	3	56:39.5
127946	ADDITIVE, GYLCOL ETHER PNB, 55 GALLON, DRUM	11/1/2021 0:0	0 11/30/2021 0:00	540	3	540	3	50:05.2
128680	PAINT, BASECOAT, AR3020-1, 1H1 BUMPER, DRUM	11/1/2021 0:0	0 11/30/2021 0:00	23.088	1	23.088	1000214	42:26.0
128680	PAINT,BASECOAT,AR3020-1,1H1 BUMPER,DRUM	11/1/2021 0:0	0 11/30/2021 0:00	130.832	1	130.832	1000214	42:26.0
126689	PAINT BASECOAT WATERBORNE 1J9 BUMPER PAINT 50 GAL DRUM GAL(L)	11/1/2021 0:0	0 11/30/2021 0:00	35.4465	1	35.4465	1000214	42:25.2
126689	PAINT BASECOAT WATERBORNE 1J9 BUMPER PAINT 50 GAL DRUM GAL(L)	11/1/2021 0:0	0 11/30/2021 0:00	200.8635	1	200.8635	1000214	42:25.1
126663	PAINT BASECOAT WATERBORNE 040 BUMPER PAINT 50GAL DRUM GAL(L)	11/1/2021 0:0	0 11/30/2021 0:00	24.1245	1	24.1245	1000214	42:24.4
126663	PAINT BASECOAT WATERBORNE 040 BUMPER PAINT 50GAL DRUM GAL(L)	11/1/2021 0:0	0 11/30/2021 0:00	136.7055	1	136.7055	1000214	42:24.4
127298	PAINT PRIMER WATERBORNE BUMPER PAINT WB1310 PHASE 2 55 GAL DRUM GAL(L)	11/1/2021 0:0	0 11/30/2021 0:00	19.641	1	19.641	1000214	42:23.2
127298	PAINT PRIMER WATERBORNE BUMPER PAINT WB1310 PHASE 2 55 GAL DRUM GAL(L)	11/1/2021 0:0	0 11/30/2021 0:00	111.299	1	111.299	1000214	42:23.2
126663	PAINT PRIMER WATERBORNE BUMPER PAINT 50GAL DRUM GAL(L)	11/1/2021 0:0	0 11/30/2021 0:00	0.6045	1	0.6045	1000214	42:22.6
126663	PAINT PRIMER WATERBORNE BUMPER PAINT 50GAL DRUM GAL(L)	11/1/2021 0:0	0 11/30/2021 0:00	3.4255	1	3.4255	1000214	42:22.5
127770	3T3 WB Red Base 2 (Mica)	11/1/2021 0:0	0 11/30/2021 0:00	2.3415	1	2.3415	1000214	42:21.8
127770	3T3 WB Red Base 2 (Mica)	11/1/2021 0:0	0 11/30/2021 0:00	13.2685	1	13.2685	1000214	42:21.7
127770	3T3 WB Red Base 1	11/1/2021 0:0	0 11/30/2021 0:00	3.408	1	3.408	1000214	42:21.1
127770	3T3 WB Red Base 1	11/1/2021 0:0	0 11/30/2021 0:00	19.312	1	19.312	1000214	42:21.0
128225	PAINT, PRIMER, JWPT70DGM, PCR, BUMPER PAIL	11/1/2021 0:0	0 11/30/2021 0:00	30.7395	1	30.7395	1000214	42:20.3
128225	PAINT, PRIMER, JWPT70DGM, PCR, BUMPER PAIL	11/1/2021 0:0	0 11/30/2021 0:00	174.1905	1	174.1905	1000214	42:20.2
127088	PAINT CLEARCOAT R2550-2 MODIFIED UNICLEAR RESIN GAL 50 GALLON DRUM	11/1/2021 0:0	0 11/30/2021 0:00	80.5695	1	80.5695	1000214	42:19.4
127088	PAINT CLEARCOAT R2550-2 MODIFIED UNICLEAR RESIN GAL 50 GALLON DRUM	11/1/2021 0:0	0 11/30/2021 0:00	456.5605	1	456.5605	1000214	42:19.3
127375	SOLVENT PAINT 2K ANTI-HARDENER FLUSH 31918 PAIL 5 GAL(L)	11/1/2021 0:0	0 11/30/2021 0:00	2.7375	1	2.7375	1000214	42:18.7
127375	SOLVENT PAINT 2K ANTI-HARDENER FLUSH 31918 PAIL 5 GAL(L)	11/1/2021 0:0	0 11/30/2021 0:00	15.5125	1	15.5125	1000214	42:18.6
126662	PAINT CLEARCOAT H-2550 UNICLEAR HARDENER BUMPER PAINT 50 GAL DRUM GAL(L)	11/1/2021 0:0	0 11/30/2021 0:00	32.6115	1	32.6115	1000214	42:17.7
126662	PAINT CLEARCOAT H-2550 UNICLEAR HARDENER BUMPER PAINT 50 GAL DRUM GAL(L)	11/1/2021 0:0	0 11/30/2021 0:00	184.7985	1	184.7985	1000214	42:17.6
127078	PAINT BASECOAT WATERBORNE 221 BUMPER PAINT 50 GAL	11/1/2021 0:0	0 11/30/2021 0:00	0	1	0	1000214	42:16.9
127078	PAINT BASECOAT WATERBORNE 221 BUMPER PAINT 50 GAL	11/1/2021 0:0	0 11/30/2021 0:00	0	1	0	1000214	42:16.8
127514	3U5 RED SOLID B2 FOR 602B	11/1/2021 0:0	0 11/30/2021 0:00	2.6145	1	2.6145	1000214	42:15.9
127514	3U5 RED SOLID B2 FOR 602B	11/1/2021 0:0	0 11/30/2021 0:00	14.8155	1	14.8155	1000214	42:15.9
127514	PAINT BASECOAT WBC717T JWBE 3U5 BASE 1 PAIL	11/1/2021 0:0	0 11/30/2021 0:00	4.6875	1	4.6875	1000214	42:15.1
127514	PAINT BASECOAT WBC717T JWBE 3U5 BASE 1 PAIL	11/1/2021 0:0	0 11/30/2021 0:00	26.5625	1	26.5625	1000214	42:15.1
127544	ASX 2880 MID GRAY ADHESION PROMOTER	11/1/2021 0:0	0 11/30/2021 0:00	2.607	1	2.607	1000214	42:14.1
127544	ASX 2880 MID GRAY ADHESION PROMOTER	11/1/2021 0:0	0 11/30/2021 0:00	14.773	1	14.773	1000214	42:14.0
127380	PAINT BASECOAT WATERBORNE 4X9 AMBER BASECOAT PAIL	11/1/2021 0:0	0 11/30/2021 0:00	0.3315	1	0.3315	1000214	42:13.2
127380	PAINT BASECOAT WATERBORNE 4X9 AMBER BASECOAT PAIL	11/1/2021 0:0	0 11/30/2021 0:00	1.8785	1	1.8785	1000214	42:13.7
127078	PAINT BASECOAT WATERBORNE 089 BASE BUMPER PAINT 50 GAL	11/1/2021 0:0	0 11/30/2021 0:00	12.507	1	12.507	1000214	42:1
	PAINT BASECOAT WATERBORNE 089 BASE BUMPER PAINT 50 GAL	11/1/2021 0:0	0 11/30/2021 0:00	12.507	1	12.507	1000514	455
127380	PAINT BASECOAT WATERBORNE 4X9 AMBER BASECOAT PAIL		0 11/30/2021 0:00	1.8785	1	1.8785	1000214	42:13.7
	PAINT BASECOAT WATERBORNE 4K9 AMBER BASECOAT PAIL				7		1000214	42-13-2
	ASX 2880 MID GRAY ADHESION PROMOTER			14.773		14.773		42:14.0
153274	PAUNT BASECOAT WELTTTT AVEE BUS BASE 1 PAUL	11/1/2021 0:0						
2 - All righ	ts reserved. Distribution is strictly prohibited without p	orior consent	11/30/3031 0:00					

Copyright ERA Environmental Consulting, Inc. 2022 -

TMMK Reports Generated from ERA [®]

TRI
Tier II
MACT / NESHAP
NSPS
Emission Inventory
Waste Management

Cost of Data Inaccuracies TIME & MONEY

TIME TO DETECT / IDENTIFY DATA ANOMALIES

TIME TO CORRECT THE DATA ANOMALIES IN YOUR DATASET

TIME TO REGENERATE REPORTS

TIME TO REVIEW REGENERATED REPORTS

VIOLATION FEES

DAMAGE TO BRAND

Impact of Data Inaccuracies on TRI

The U.S. Environmental Protection Agency (EPA) has initiated enforcement actions against hundreds of facilities that reported inaccurately to the Toxics Release Inventory (TRI). Reporters who violate the Emergency Planning and Community Right-to-Know Act (EPCRA) could face penalties up to \$27,500 per violation, per day per reportable chemical.

Toyota Philosophy Do it right in the beginning

13

Cost of rework

ERA Bridging the Gap on Data Anomaly Detection

ERA Environmental

Toyota Motor Manufacturing Kentucky

Introducing AI Data Anomaly Detection for Big Data

onco

Presenter: Dong Jae Kim,

PhD Candidate (Concordia University)

Monitor All Your Data

Checking your data quality is crucial

Product	Start Date	End Date	Amount (gal)
Х	2/1/2020	2/29/2020	1000
Х	3/1/2020	3/29/2020	1
Х	4/1/2020	4/29/2020	1

Manual monitoring is impossible. Al can help.

Al-powered systems are everywhere

20

Al can harness existing data to make recommendations

Recommendation

We discuss two types of anomalies in user reports

Anomalous amount usage

Anomalous report frequency

ERA employed the isolation forest model

INTUITION:

- "How many splits does it take to isolate a single data point?"

We also used an ensemble of models for outlier detection

24

Validation Challenges – What is an 'anomaly'?

REASONS FOR FLAGGING

Application of our anomaly detection model on product usage

Application of our anomaly detection model on product usage

<u>Q2 REPORT – product X:</u>

Date

Application of our anomaly detection model on product usage

Copyright ERA Environmental Consulting, Inc. 2022 - All rights reserved. Distribution is strictly prohibited without prior consent.

Date

Users can parameterize different model configurations

Why is it important to detect data anomalies?

Data Accuracy Matters:

- When dealing with emissions of CO2, PM, VOC, Xylene, ...
- Data Entry Accuracy matters:

Accidentally adding a decimal point instead of comma, makes a big impact on calculated results!! • Example: of a product Containing 20% of any single of the chemicals above.

Erroneous record: 190<mark>.</mark>020 K 20% = 38.004 bs. of emission

• Correct record: 190,020 X 20% = 38,040 bs. of emission

Types of data anomalies Detected

🔊 Client Raw Data.xlsx

- sample_amount_yearly.xlsx
- 🔊 sample_gap.xlsx

sample_Monthly_amount_record.xlsx

sample period.xlsx

Anomalies Analysis of Monthly Records

Looking Anomalies in Monthly recordkeeping data:

Applic	ationSystemID	Unique _ID	Amount	StartDate	EndDate	lso_forest	local	z_score (STD	Scores	Outliers
		- , 1	•	*	•	•	•	Deviation 🔻	•	*
Example of Data	Filling Operatio	11	155,222	1/1/2021	1/31/2021	0	0	0.5711	0.3928	Normal
Anomaly:	Filling Operatio	11	138,516	2/1/2021	2/28/2021	0	0	0.2530	0.3132	Normal
	Filling Operatio	11	111,589	3/1/2021	3/31/2021	0	0	0.2598	0.3150	Normal
9/1/2021 - 9/30/2021 in	Filling Operatio	11	153,804	4/1/2021	4/30/2021	0	0	0.5441	0.3860	Normal
amount of 11,222	Filling Operatio	11	162,876	5/1/2021	5/31/2021	0	0	0.7169	0.4292	Normal
flagged as Outlier	Filling Operatio	11	76,328	6/1/2021	6/30/2021	1	0	0.9313	0.7328	Normal
<u> </u>	nd Filling Operatio	11	68,151	7/1/2021	7/31/2021	0	0	1.0871	0.5218	Normal
A05-0FI	uid Filling Operatio	11	65,512	8/1/2021	8/31/2021	0	0	1.1373	0.5343	Normal
A05-07- Fl	uid Filling Operati	11	11,222	9/1/2021	9/30/2021	1	0	2.1713	1.0428	Outlier
A05-07- Fl	uid Filling Operatio	11	60,175	10/1/2021	10/31/2021	0	0	1.2390	0.5597	Normal
A05-07- Fluid Filling Operation		11	58,042	11/1/2021	11/30/2021	0	0	1.2796	0.5699	Normal
A05-07- Fl	uid Filling Operatio	11	57,576	12/1/2021	12/31/2021	0	0	1.2885	0.5721	Normal

	ApplicationSystemID	Unique _ID	Amount	StartDate	EndDate	lso_forest	local	z_score (STD Deviation)	Scores	Outliers
	A05-07- Fluid Filling Operations	11	152,729	8/1/2018	8/31/2018	0	0	0.5237	0.3809	Normal
	A05-07- Fluid Filling Operations	11	143,951	9/1/2018	9/30/2018	0	0	0.3565	0.3391	Normal
	A05-07- Fluid Filling Operations	11	155,790	11/1/2019	11/30/2019	0	0	0.5819	0.3955	Normal
	A05-07- Fluid Filling Operations	11	113,105	12/1/2019	12/31/2019	0	0	0.2310	0.3077	Normal
Ν	A05-07- Fluid Filling Operations	11	164,285	1/1/2020	1/31/2020	0	0	0.7437	0.4359	Normal
	A05-07- Fluid Filling Operations	11	148,165	2/1/2020	2/29/2020	0	0	0.4367	0.3592	Normal
	A05-07- Fluid Filling Operations	11	102,589	3/1/2020	3/31/2020	1	0	0.4312	0.6078	Normal
	A05-07- Fluid Filling Operations	11	34,027	5/1/2020	5/31/2020	1	0	1.7370	0.9342	Outlier
	A05-07- Fluid Filling Operations	11	161,815	6/1/2020	6/30/2020	0	0	0.6967	0.4242	Normal
	A05-07- Fluid Filling Operations	11	160,908	7/1/2020	7/31/2020	0	0	0.6794	0.4199	Normal
	A05-07- Fluid Filling Operations	11	186,351	8/1/2020	8/31/2020	1	0	1.1640	0.7910	Normal
	A05-07- Fluid Filling Operations	11	213,180	9/1/2020	9/30/2020	1	1	1.6749	1.1687	Outlier
	A05-07- Fluid Filling Operations	11	198,086	10/1/2020	10/31/2020	1	1	1.3874	1.0969	Outlier
	A05-07- Fluid Filling Operations	11	164,019	11/1/2020	11/30/2020	0	0	0.7387	0.4347	Normal
	A05-07- Fluid Filling Operations	11	163,267	12/1/2020	12/31/2020	0	0	0.7243	0.4311	Normal
	A05-07- Fluid Filling Operations	11	155,222	1/1/2021	1/31/2021	0	0	0.5711	0.3928	Normal
	A05-07- Fluid Filling Operations	11	138,516	2/1/2021	2/28/2021	0	0	0.2530	0.3132	Normal
	A05-07- Fluid Filling Operations	11	111,589	3/1/2021	3/31/2021	0	0	0.2598	0.3150	Normal
	A05-07- Fluid Filling Operations	11	153,804	4/1/2021	4/30/2021	0	0	0.5441	0.3860	Normal
	A05-07- Fluid Filling Operations	11	162,876	5/1/2021	5/31/2021	0	0	0.7169	0.4292	Normal
	A05-07- Fluid Filling Operations	11	76,328	6/1/2021	6/30/2021	1	0	0.9313	0.7328	Normal
	A05-07- Fluid Filling Operations	11	68,151	7/1/2021	7/31/2021	0	0	1.0871	0.5218	Normal
	A05-07- Fluid Filling Operations	11	65.512	8/1/2021	8/31/2021	0	0	1.1373	0.5343	Normal
	A05-07- Fluid Filling Operations	11	11,222	9/1/2021	9/30/2021	1	0	2.1713	1.0428	Outlier
	A05-07- Fluid Filling Operations	11	60,175	10/1/2021	10/31/2021	0	0	1.2390	0.5597	Normal
	A05-07- Fluid Filling Operations	11	58,042	11/1/2021	11/30/2021	0	0	1.2796	0.5699	Normal
	A05-07- Fluid Filling Operations	11	57,576	12/1/2021	12/31/2021	0	0	1.2885	0.5721	Normal

Monthly

Record

Amount

Anomalies

Analysis

Unique_ID	Amount	Year 🖵
11262	126,419	2017
11262	1,415,535	2018
11262	625,965	2019
11262	40,646	2020

Records Yearly Amount Anomalies Analysis

- Looking for Yearly Amount Anomalies in Summary data:
 - Yearly Amount Anomalies in
 - Example:
 - Year 2018-- flagged as Outlier

Yearly
Record
Amount
Anomalies
Analysis

Unique_ID	Amount	Year	lso_forest	local	z_score (STD Deviation)	Scores	Outliers
11204	570	2018	0 0.		0.8783	0.4696	Normal
11204	1,140	2019	0	0	0.6831	0.4208	Normal
11204	2,850	2020	0	1	0.0976	0.5244	Normal
11204	7,980	2021	1	0	1.6590	0.9148	Outlier
11262	126,419	2017	0	0	0.7793	0.4448	Normal
11262	1,415,535	2018	1	0	1.5804	0.8951	Outlier
11262	625,965	2019	0	1	0.1351	0.5338	Normal
11262	40,646	2020	0	0	0.9363	0.4841	Normal
11525	57,131	2017	0	0	0.2859	0.3215	Normal
11525	62,689	2018	0	0	0.2257	0.3064	Normal
11525	55,082	2019	0	0	0.3081	0.3270	Normal
11525	325,772	2020	1	1	2.6240	1.4060	Outlier
12766	20,000	2019	0	-1	1.3371	0.3343	Outlier
12766	1,469,814	2020	0	-1	0.2698	0.0674	Normal
12766	2,189,400	2021	0	-1	1.0674	0.2668	Normal
Records Days Gap Anomalies Analysis

- Looking for Days gap in data entry:
 - Days gap between last entry to next entry
 - Example:
 - 8/1/2021 8/31/2021
 - 10/1/2021 10/31/2021-- flagged as Outlier
 - Data Gap:
 - Missing 9/1/2021 9/30/2021
 - Period- Delta is 30 days
 - Note 32 represents normal date interval

	ApplicationSystemID	Unique_ ID	Amount	Period_ Delta	StartDate	EndDate	iso_ forest	local	Z_score (STD Deviation)	Scores	Outliers
	A03-03- Glass Installation- W	8	3,672		8/1/2018	8/31/2018	-1	-1	-1	-1	-1
	A03-03- Glass Installation- W	8	3,456	1	9/1/2018	9/30/2018	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	2,592	397	11/1/2019	11/30/2019	1	1	4.97243736	1.99311	Outlier
	A03-03- Glass Installation- W	8	3,240	1	12/1/2019	12/31/2019	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	3,888	1	1/1/2020	1/31/2020	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	3,240	1	2/1/2020	2/29/2020	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	2,592	1	3/1/2020	3/31/2020	0	0	0.230430024	0.05761	Normal
N	A03-03- Glass Installation- W	8	648	31	5/1/2020	5/31/2020	1	0	0.163726596	0.29093	Outlier
	A03-03- Glass Installation- W	8	2,592	1	6/1/2020	6/30/2020	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	2,808	1	7/1/2020	7/31/2020	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	4,104	1	8/1/2020	8/31/2020	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	3,456	1	9/1/2020	9/30/2020	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	4,104	1	10/1/2020	10/31/2020	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	3,456	1	11/1/2020	11/30/2020	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	2,808	1	12/1/2020	12/31/2020	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	3,024	1	1/1/2021	1/31/2021	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	4,104	1	2/1/2021	2/28/2021	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	2,160	1	3/1/2021	3/31/2021	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	3,024	1	4/1/2021	4/30/2021	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	3,672	1	5/1/2021	5/31/2021	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	4,320	1	6/1/2021	6/30/2021	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	4,536	1	7/1/2021	7/31/2021	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	3,456	1	8/1/2021	8/31/2021	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	1,944	31	10/1/2021	10/31/2021	1	0	0.163726596	0.29093	Outlier
	A03-03- Glass Installation- W	8	2,376	1	11/1/2021	11/30/2021	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	3,024	1	12/1/2021	12/31/2021	0	0	0.230430024	0.05761	Normal
	A03-03- Glass Installation- W	8	216	1	12/1/2021	12/31/2021	0	0	0.230430024	0.05761	Normal

Sample Records Days Gap Anomalies Analysis

Records Period Anomalies Analysis

- Looking for Data entry Period Anomalies:
 - Detecting Data Anomalies regarding Start and End date data entry pattern.
 - Example:
 - 6/1/2019 6/30/2019 -- Normal
 - 8/1/2019 8/30/2019-- flagged as Outlier
 - Data Gap:
 - Normal Expected entry is 8/1/2019 8/31/2019
 - Period- is 30 days

• Note 32 represents normal date interval

Records
Period
Anomalies
Analysis

	ApplicationSystemID	Unique_I D	Amount	Period	StartDate	EndDate	lso_ forest	local	z_score (STD Deviation)	Scores	Outliers
G	A400 / ATRIV-TRIVIAL ACTIVITIE	270	8.818488	32	1/1/2019	1/31/2019	0	0	0.37796	0.09449	Normal
G	A400 / ATRIV-TRIVIAL ACTIVITIE	270	4.409244	32	2/1/2019	2/28/2019	0	0	0.37796	0.09449	Normal
G	A400 / ATRIV-TRIVIAL ACTIVITIE	270	6.613866	32	4/1/2019	4/30/2019	0	0	0.37796	0.09449	Normal
G	A400 / ATRIV-TRIVIAL ACTIVITIE	270	6.613866	32	5/1/2019	5/31/2019	0	0	0.37796	0.09449	Normal
G	A400 / ATRIV-TRIVIAL ACTIVITIE	270	13.227732	32	6/1/2019	6/30/2019	0	0	0.37796	0.09449	Normal
G	A400 / ATRIV- TRIVIAL ACTIVITI	270	6.613866	29	8/1/2019	8/30/2019	1	1	2.64575	1.16144	Outlier
G	A400 / ATRIV-TRIVIAL ACTIVITIE	270	4.409244	32	10/1/2019	10/31/2019	0	0	0.37796	0.09449	Normal

Introduction to Sustainability Basic Concepts

Presenter: Sarah Sajedi, CTO / Co- Founder (ERA)

SUSTAINABILITY TRACKING

THE IMPORTANCE OF SUSTAINABILITY TRACKING & REPORTING

Measure progress and track goals

Demonstrating effectiveness and impact

Decision-making process is more efficient

Identifies operations and practices that need to be improved

Reduced risk across your supply chain

Improved corporate reputation and consumer confidence

Mitigate negative environmental, social, and governanc<mark>e impac</mark>ts

SCOPE 2- DEFINITION/METRICS

 Scope 2 Emissions are indirect emissions that result from an organizations activities but are emitted from sources owned by

other parties.

SCOPE 2: EMISSION FACTOR APPROACHES (ELECTRICITY)

Location Based:

- Direct Line.
- Region/Sub-Region.
- Nation based.

Calculation: Total Emissions (CO2, CH4, N2O) = Activity (energy consumed, heat/steam/cooling used) * Emission Factor

THIRD-PARTY PARTNERSHIP WITH Urjanet

Submitter's Name	Joel Smith
Submitter's Phone Number	450 438 4585
Email Address	Joel.Smith@abc.com
Utility Provider	Please Choose:
Utility Account Username	Association, Mississippi 4D Sanitation & Recycling
Utility Account Password	A & A Waste Management Inc. A & S Sanitation Services, New Jersey
	A A A Septic Tank Cleaning, West Virginia

Utility data aggregator

Connects with electricity, natural gas, waste, water, and telecom providers

Data automatically fed into ERA's system within 24 hours

For Small, medium to large enterprises: locate your facilities and measure their sustainability metrics without effort

Closely monitor progress toward sustainability initiatives with utility bill and interval data

WATER EMISSION FACTORS

Calculate water emission factors based on water usage data provided:

Emission factors are calculated as per the water consumption used in cooling, treatment, transportation, etc.

Emission factors are typically calculated as EF x Usage = Emissions

WASTE EMISSION FACTORS

Are sorted per:

The type of waste material landfilled, recycled, combusted, composted, etc.

How the waste is processed aluminum cans, drywall, copper wire, concrete, etc.

SCOPE 3 - DEFINITION

Scope 3: Supply chain emissions are the emissions which occur from other sources owned or controlled by other entities within an organization.

50

Scope 3 emissions are divided in 15 different categories.

Upstream or downstream

Upstream scope 3 emissions

Downstream scope 3 emissions

Scope 3 category

- 1. Purchased goods and services
- 2. Capital goods
- 3. Fuel- and energy-related activities (not included in scope 1 or scope 2)
- 4. Upstream transportation and distribution
- 5. Waste generated in operations
- 6. Business travel
- 7. Employee commuting
- 8. Upstream leased assets
- 9. Downstream transportation and distribution

Y

- **10.** Processing of sold products
- **11.** Use of sold products
- **12.** End-of-life treatment of sold products
- 13. Downstream leased assets
- 14. Franchises
- 15. Investments

SCOPE 3 – OPTIONS OF organization's boundary

52

Example of how the consolidation approach affects the scope 3 inventory

SCOPE 3 - METRICS

Department for Business, Energy & Industrial Strategy

Department for Environment Food & Rural Affairs

CARBON CREDIT TYPES – CARBON OFFSET

Certificates sold to 3rd party companies that want to balance their CO_2 emissions

One certificate represents the reduction of 1 metric ton of CO_2 or CO_2 -e emission

Companies can claim to have reduced or avoided GHG emissions outside of the organization's operations

Emission reduction projects reduce GHGs by -

- capturing and destroying a greenhouse
- producing energy using clean, renewable resources
- Sequestering GHGs

Offsets can be used to reduce an organization's scope 1, 2 or 3 emissions

CARBON CREDIT TYPES – RENEWABLE ENERGY CREDITS

(RFC)

*

1 REC = one megawatt-hour (MWh) of electricity produced by renewable energy source

There is no way to differentiate between renewable and nonrenewable electricity once it goes onto the grid. RECs can be generated when companies

- produce renewable energy on-site
- purchase a green power product from an electricity service provider
- sign a Power Purchase Agreement (PPA) with a renewable energy producer, etc.

RECs are generally used to reduce Scope 2 emissions; Companies can claim to have used renewable electricity from a low or zero emissions source

SCOPE 1 - CHALLENGES

 For On-Road Vehicles, distance should be tracked in units of vehicle-miles or vehicle-kilometers, as opposed to passenger-miles or passenger-kilometers, which are often used for scope 3 mobile source emissions.

SCOPE 2 - CHALLENGES

 Large Companies must be sure that they have accounted for all energy providers as bigger companies often purchase energy from multiple sources/location.

SCOPE 3 CHALLENGES

 Obtaining data for all Scope 3 metrics can be challenging as they are provided from many different sources which are not always 100% accurate. Most of the metrics for Scope 3 are calculated as an average and the data quality as a result can be relatively poor.

AUTOMATION CAPABILITIES

AUTOMATICALLY POPULATE YOUR SUSTAINABILITY REPORTS

60

CARBON DISCLOSURE PROJECT

ECOVADIS

GLOBAL REPORTING INITIATIVE

Similarities Between Standards

ERA Sustainability Module Demonstration

Presenter: Chelsea Scalia, Sustainability Specialist & Project Manager (ERA)

ERA'S SUSTAINABILITY MODULE

BENEFIT FROM A COMPREHENSIVE SUSTAINABILITY TOOL

BUSINESS CONTINUITY

AUDITABILITY

DATA RETENTION

STREAMLINE TRAINING

ERA'S SUSTAINABILITY SOFTWARE

- Track sustainability metrics such as energy, water, waste, refrigerants, travel, carbon footprint, etc.
- Benchmarking & Tracking Goals
 - Observe and track activities
 - Use KPIs to spot inefficiencies in daily operations
 - Visibility on progress of Sustainability targets
 - Flexible KPI & Reporting

ERA'S SUSTAINABILITY SOFTWARE

Standardization

- Dedicated portal with guided sustainability fields to standardize data collection process
- Built-in standardization capabilities
 - Converts and standardizes data discrepancies, units, etc.
 - Data normalization

MASTER METRICS & EMISSION FACTOR FORM

• Fully configurable to meet your corporate and site-specific goals

66

- Only track metrics relevant to your organization
- Assign to each site ONLY metrics that it should be tracking
- Master library of Sustainability Metrics & Emission Factors

MASTER METRICS & EMISSION FACTOR FORM

ERA'S MASTER EMISSION FACTOR LIBRARY

			4 may 6 may	to Broasse Patter Pa	ant furm - 2 furm	3 Conurse	and Close			•	
	NETAA.T										
>	* beard free		Master Metrics and Emission Factors: Emission Factor Parent Form								
			Corporate	Please Channel	· • 18	9	0				
			Division	Parese Charge		0	0				
			Business Unit	Parte Orose	- 1	0	•				
			Facility	ERA Test Faci			0				
			Department	DriviDer		9	0				
	Emplo facto Metrica										
				Search for Metrics with Emission Factors							
	Save										
	Scope	Cabagory	Type		Fuel Type	Provider(op	torial)	Hetric Name			
	Scope 1		Hoble Combustion CO2	A,6	ation Gassline			Avlation Fuel	-		
	C Stige 1		Hobie Conductor CO2	04	ser Fuel			Creser Counting			
	E Scope s		Mobile Combustion CO2		united Statural (Las / ME)			Cardo and	-		
	U prope s Proper s Dupyfiel Natural Ces (UKG) CHICUNE										
		Standard En	insien Facture								

Sources include:

✓ U.S. Environmental Protection Agency

67

- ✓ European Environment Agency
- ✓ Environment and Climate Change Canada

✓ Environment Canada

 ✓ Intergovernmental Panel on Climate Change

Master Metrics & **Emission Factor Form**

SUSTAINABILITY DATA ENTRY

STREAMLINE THE DATA ENTRY PROCESS

Manual Data Entry

Manually enter sustainability usage data directly into ERA's easy-to-use Sustainability Data Entry

Mass-Import Data

Import large amounts of data (ex. historical data) into the system from an Excel spreadsheet

Sustainability Data Entry Form

ERA ENVIRONMENTAL

BUSINESS TRAVEL DATA COLLECTION WORKFLOW

71

- Easily track Scope 3 metrics & calculate emissions
- Streamline the data collection process using ERA's smart forms
- Your employees can manually enter details about their daily commutes and other business-related travel

Business Travel Data Collection Workflow

ERA HOME PAGE & DASHBOARD

Server Se

~

Scope-2 Sustainability Dashboard - Clone -

*{*0

Q []

Enter keyword

TOTAL EMISSIONS

74

NORMALIZATION & INTENSITY

ERA STANDARD SUSTAINABILITY KPIS

CONSUMPTION & USAGE

76

ERA STANDARD SUSTAINABILITY KPIS

Year	Metric		
Month	Electricity	Natural Gas	Total Sum of CO2_Emissions_metric_tons
2021	21 014.9973	9 110.85789	30 125.85519
01 - January	1 623.69541	991.10109	2 614.7965
02 - February	1 597.57858	733.59986	2 331.17844
03 - March	1 612.77646	836.29734	2 449.0738
04 - April	1 603.61486	731.2732	2 334.88806
05 - May	1 804.08241	697.185	2 501.26741
06 - June	1 957.5542	693.07277	2 650.62697

xis Labels		Labels		
itle	Year	Chart Title		
s Title	CO2 Emissions (metric tons)	Legend Position	Bottom	~
s Title		Legend Detail Labels	Show Label Details	~
e Value	0.00	Data Labels	Show Values on hover	~
		Count of Decimal Places	(not specified)	~

Series					Axis Labels
Electricity-Sum of CO2_Emissions_metric_tons	Stackec	~	Right Axis		X Axis Title
Natural Gas-Sum of CO2_Emissions_metric_tona	Default	•	Right Axis		Kight Y AXIS TITIE
Propane-Sum of CO2_Emissions_metric_tons	Default	~	Right Axis	•	Target Line Value

KEY PERFORMANCE INDICATORS

\$ -

- CONFIGURABLE FROM THE DASHBOARD
- EDIT DISPLAY SETTINGS
- ACCESS KPI DATA TABLE
- ADD TARGET LINE
- EXPORT TO EXCEL

BENEFITS & KEY FEATURES

A COMPLETE ESG SOFTWARE SOLUTION

PLUG & PLAY MODULE

SIMPLE USER DASHBOARD

78

MASS IMPORT CAPABILITY

MEANINGFUL KPIs

STANDARDIZATION

Would you like to learn more about ERA software?

Erin Manitou Managing Partner | Business Development & Marketing Manager Tel: 438-799-6219 E-mail: <u>erin.manitou@era-ehs.com</u> Web site: <u>www.era-environmental.com</u>

Thank you!! Questions??

References

- 1. Scope 3 Inventory Guidance | US EPA
- 2. <u>Corporate Value Chain (Scope 3) Standard | Greenhouse Gas Protocol (ghgprotocol.org)</u>
- 3. <u>Scope 2 Guidance | Greenhouse Gas Protocol (ghgprotocol.org)</u>
- 4. Greenhouse Gas Inventory Guidance: Indirect Emissions from Purchased Electricity (EPA)
- 5. Calculation Tools | Greenhouse Gas Protocol (ghgprotocol.org)
- 6. <u>Scope3_Calculation_Guidance_0.pdf (ghgprotocol.org)</u>
- 7. Emission Factors for Greenhouse Gas Inventories (epa.gov)
- 8. <u>Greenhouse gas reporting: conversion factors 2022 GOV.UK (www.gov.uk)</u>
- 9. Greenhouse Gas Inventory Guidance: Direct Emissions from Stationary Combustion Sources (epa.gov)
- 10. <u>Amazon.ca : freon r410a</u>
- 11. <u>Greenhouse Gas Inventory Guidance: Direct Fugitive Emissions from Refrigeration, Air Conditioning, Fire Suppression, and Industrial Gases (epa.gov)</u>
- 12. <u>Greenhouse Gas Inventory Guidance: Direct Emissions from Mobile Combustion Source (epa.gov)</u>
- 13. Carbon emissions set to drop this year by biggest amount since World War II (freshdaily.ca)

